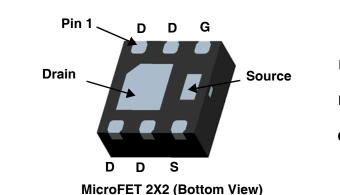


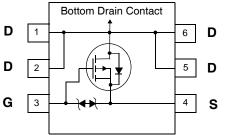
# April 2008

# FDMA530PZ Single P-Channel PowerTrench<sup>®</sup> MOSFET -30V, -6.8A, $35m\Omega$

# Features

**FAIRCHILD** 


- Max  $r_{DS(on)} = 35m\Omega$  at  $V_{GS} = -10V$ ,  $I_D = -6.8A$
- Max  $r_{DS(on)} = 65m\Omega$  at  $V_{GS} = -4.5V$ ,  $I_D = -5.0A$
- Low profile 0.8mm maximum in the new package MicroFET 2X2 mm
- HBM ESD protection level > 3kV typical (Note 3)
- RoHS Compliant




# **General Description**

This device is designed specifically for battery charge or load switching in cellular handset and other ultraportable applications. It features a MOSFET with low on-state resistance.

The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

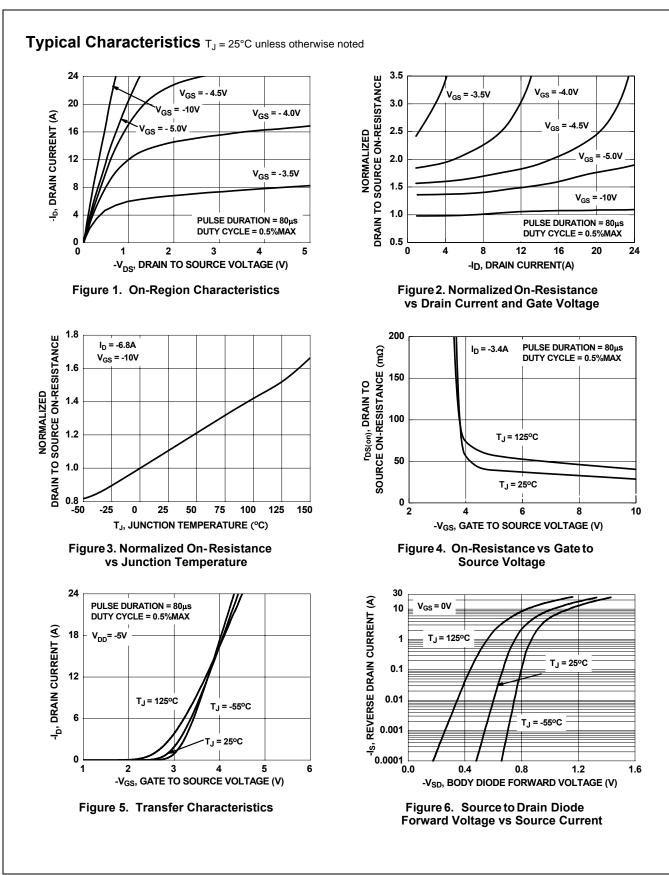




## MOSFET Maximum Ratings T<sub>A</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                        | Ratings   | Units       |     |  |
|-----------------------------------|--------------------------------------------------|-----------|-------------|-----|--|
| V <sub>DS</sub>                   | Drain to Source Voltage                          |           | -30         | V   |  |
| V <sub>GS</sub>                   | Gate to Source Voltage                           |           | ±25         | V   |  |
| I <sub>D</sub>                    | Drain Current -Continuous                        | (Note 1a) | -6.8        | — A |  |
|                                   | -Pulsed                                          |           | -24         |     |  |
| D                                 | Power Dissipation                                | (Note 1a) | 2.4         | 14/ |  |
| P <sub>D</sub>                    | Power Dissipation                                | (Note 1b) | 0.9         | W   |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperature Range |           | -55 to +150 | °C  |  |

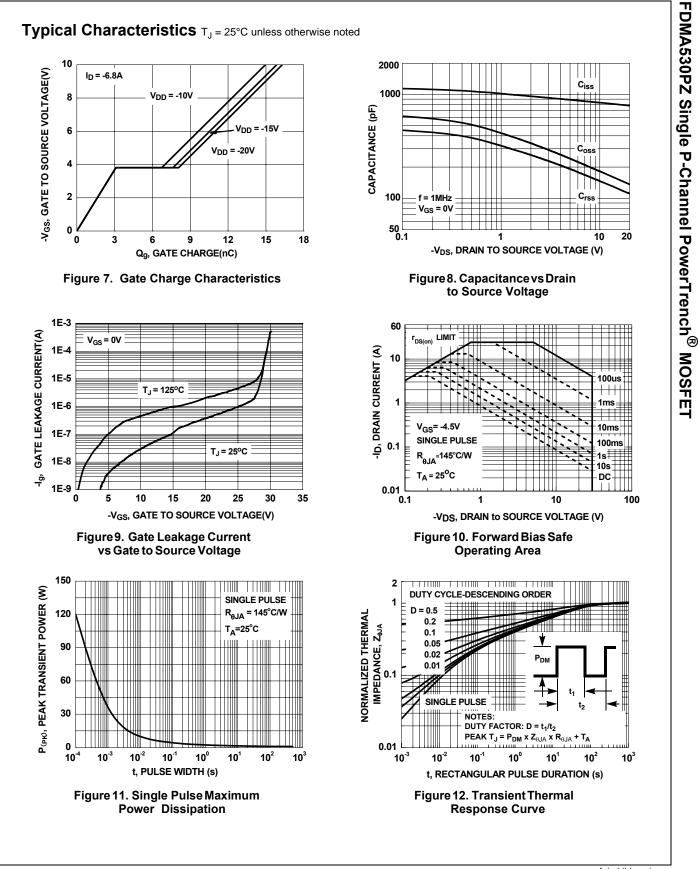
### **Thermal Characteristics**


| $R_{\thetaJA}$      | Thermal Resistance, Junction to Ambient | (Note 1a) | 52  | °C/W |
|---------------------|-----------------------------------------|-----------|-----|------|
| $R_{	ext{	heta}JA}$ | Thermal Resistance, Junction to Ambient | (Note 1b) | 145 | C/VV |

## Package Marking and Ordering Information

| Device Marking | Device    | Package      | Reel Size | Tape Width | Quantity   |
|----------------|-----------|--------------|-----------|------------|------------|
| 530            | FDMA530PZ | MicroFET 2X2 | 7"        | 8mm        | 3000 units |

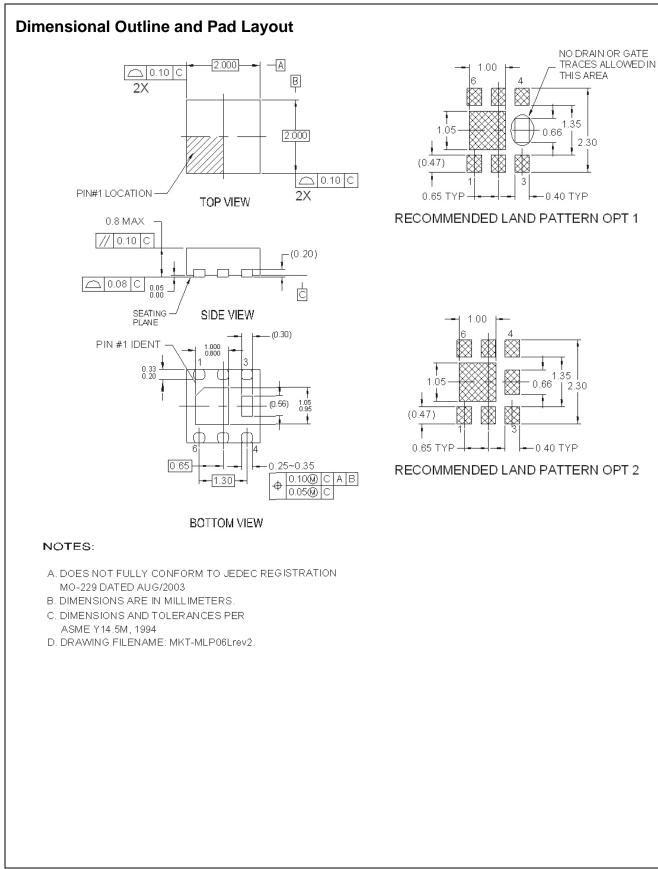
| Cteristics<br>Drain to Source Breakdown Voltage<br>Breakdown Voltage Temperature<br>Coefficient                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Breakdown Voltage Temperature                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Breakdown Voltage Temperature                                                                                                                                                                                                                                                                    | I <sub>D</sub> = -250μA, V <sub>GS</sub> = 0V                                                                                                                                                                                                                                                             | -30                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Coemcient                                                                                                                                                                                                                                                                                        | $I_D = -250\mu$ A, referenced to 25°C                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mV/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Zero Gate Voltage Drain Current                                                                                                                                                                                                                                                                  | $V_{DS} = -24V, V_{GS} = 0V$                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Gate to Source Leakage Current                                                                                                                                                                                                                                                                   | $V_{GS} = \pm 25V, V_{DS} = 0V$                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| cteristics                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                  | $V_{00} = V_{00}$ $I_0 = -250 \mu A$                                                                                                                                                                                                                                                                      | _1                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Temperature Coefficient                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mV/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Static Drain to Source On Resistance                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Forward Transconductance                                                                                                                                                                                                                                                                         | $v_{\rm DS} = -10v, \ I_{\rm D} = -6.8A$                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Characteristics                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Input Capacitance                                                                                                                                                                                                                                                                                | $\gamma = 15\gamma \gamma = -0\gamma$                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Output Capacitance                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reverse Transfer Capacitance                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Characteristics                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Turn-On Delay Time<br>Rise Time                                                                                                                                                                                                                                                                  | $V_{DD} = -15V, I_D = -6.8A$                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Turn-On Delay Time                                                                                                                                                                                                                                                                               | $^{}$ V <sub>DD</sub> = -15V, I <sub>D</sub> = -6.8A<br>                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Turn-On Delay Time<br>Rise Time                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Turn-On Delay Time<br>Rise Time<br>Turn-Off Delay Time                                                                                                                                                                                                                                           | $V_{GS} = -10V, R_{GEN} = 6\Omega$                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34<br>69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Turn-On Delay Time<br>Rise Time<br>Turn-Off Delay Time<br>Fall Time                                                                                                                                                                                                                              | $V_{GS} = -10V, R_{GEN} = 6\Omega$                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>43<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34<br>69<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns<br>ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Turn-On Delay Time<br>Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge                                                                                                                                                                                                         | $V_{GS} = -10V, R_{GEN} = 6\Omega$ $V_{GS} = -10V$                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>43<br>31<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34<br>69<br>50<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns<br>ns<br>ns<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTotal Gate ChargeTotal Gate Charge                                                                                                                                                                                                        | $V_{GS} = -10V, R_{GEN} = 6\Omega$                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>43<br>31<br>16<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34<br>69<br>50<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns<br>ns<br>nS<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTotal Gate ChargeTotal Gate ChargeGate to Source Gate Charge                                                                                                                                                                              | $V_{GS} = -10V, R_{GEN} = 6\Omega$                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>43<br>31<br>16<br>9<br>3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34<br>69<br>50<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTotal Gate ChargeTotal Gate ChargeGate to Source Gate ChargeGate to Drain "Miller" Charge                                                                                                                                                 | $V_{GS} = -10V, R_{GEN} = 6\Omega$ $V_{GS} = -10V$ $V_{DD} = -15V$ $I_{D} = -6.8A$                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>43<br>31<br>16<br>9<br>3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34<br>69<br>50<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Turn-On Delay Time         Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge         Total Gate Charge         Gate to Source Gate Charge         Gate to Drain "Miller" Charge                                                                                  | $V_{GS} = -10V, R_{GEN} = 6\Omega$ $V_{GS} = -10V$ $V_{DD} = -15V$ $I_{D} = -6.8A$                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>43<br>31<br>16<br>9<br>3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34<br>69<br>50<br>24<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ns<br>ns<br>nC<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Turn-On Delay Time         Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge         Total Gate Charge         Gate to Source Gate Charge         Gate to Drain "Miller" Charge         Irce Diode Characteristics         Maximum Continuous Drain-Source Diode | $V_{GS} = -10V, R_{GEN} = 6\Omega$ $V_{GS} = -10V$ $V_{DD} = -15V$ $V_{DD} = -6.8A$ He Forward Current                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>43<br>31<br>16<br>9<br>3.1<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34<br>69<br>50<br>24<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ns<br>ns<br>nC<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                  | Gate to Source Threshold Voltage         Gate to Source Threshold Voltage         Temperature Coefficient         Static Drain to Source On Resistance         Forward Transconductance         Characteristics         Input Capacitance         Output Capacitance         Reverse Transfer Capacitance | Gate to Source Threshold Voltage $V_{GS} = V_{DS}$ , $I_D = -250\mu A$ Gate to Source Threshold Voltage<br>Temperature Coefficient $I_D = -250\mu A$ , referenced to 25°CStatic Drain to Source On Resistance $V_{GS} = -10V$ , $I_D = -6.8A$ Static Drain to Source On Resistance $V_{GS} = -10V$ , $I_D = -6.8A$ , $T_J = 125°C$ Forward Transconductance $V_{DS} = -10V$ , $I_D = -6.8A$ CharacteristicsInput Capacitance $V_{DS} = -15V$ , $V_{GS} = 0V$ ,<br>$f = 1MHz$ | Gate to Source Threshold Voltage $V_{GS} = V_{DS}$ , $I_D = -250\mu$ A       -1         Gate to Source Threshold Voltage $I_D = -250\mu$ A, referenced to 25°C       I         Temperature Coefficient $V_{GS} = -10V$ , $I_D = -6.8A$ V         Static Drain to Source On Resistance $V_{GS} = -10V$ , $I_D = -6.8A$ V         Forward Transconductance $V_{DS} = -10V$ , $I_D = -6.8A$ , $T_J = 125°C$ V         Forward Transconductance $V_{DS} = -10V$ , $I_D = -6.8A$ Operation         Characteristics       Input Capacitance $V_{DS} = -15V$ , $V_{GS} = 0V$ , $f = 1MHz$ | Gate to Source Threshold Voltage $V_{GS} = V_{DS}$ , $I_D = -250\mu A$ $-1$ $-2.1$ Gate to Source Threshold Voltage<br>Temperature Coefficient $I_D = -250\mu A$ , referenced to $25^{\circ}C$ $5.4$ Static Drain to Source On Resistance $V_{GS} = -10V$ , $I_D = -6.8A$ $30$ VGS = -10V, $I_D = -6.8A$ $30$ VGS = -10V, $I_D = -6.8A$ $52$ VGS = -10V, $I_D = -6.8A$ , $T_J = 125^{\circ}C$ $43$ Forward Transconductance $V_{DS} = -10V$ , $I_D = -6.8A$ $17$ CharacteristicsInput Capacitance $V_{DS} = -15V$ , $V_{GS} = 0V$ ,<br>$f = 1MHz$ $805$ | Gate to Source Threshold Voltage $V_{GS} = V_{DS}$ , $I_D = -250\mu A$ $-1$ $-2.1$ $-3$ Gate to Source Threshold Voltage<br>Temperature Coefficient $I_D = -250\mu A$ , referenced to $25^{\circ}C$ $5.4$ Static Drain to Source On Resistance $V_{GS} = -10V$ , $I_D = -6.8A$ $30$ $35$ V_{GS} = -4.5V, $I_D = -5.0A$ $52$ $65$ $V_{GS} = -10V$ , $I_D = -6.8A$ , $T_J = 125^{\circ}C$ $43$ $63$ Forward Transconductance $V_{DS} = -10V$ , $I_D = -6.8A$ $17$ CharacteristicsInput Capacitance $V_{DS} = -15V$ , $V_{GS} = 0V$ ,<br>$f = 1MHz$ $805$ $1070$ |


Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.</li>
 The diode connected between the gate and the source serves only as protection against ESD. No gate overvoltage rating is implied.



FDMA530PZ Rev.B1

3


www.fairchildsemi.com



FDMA530PZ Rev.B1

4

www.fairchildsemi.com



FDMA530PZ Single P-Channel PowerTrench<sup>®</sup> MOSFET

www.fairchildsemi.com



SEMICONDUCTOR

#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

| ACEx®                                | FPS™                                | PDP-SPM™                        | The Power Franchise <sup>®</sup> |
|--------------------------------------|-------------------------------------|---------------------------------|----------------------------------|
| Build it Now™                        | F-PFS™                              | Power-SPM™                      | <sup>the</sup> wer               |
| CorePLUS™                            | FRFET®                              | PowerTrench <sup>®</sup>        | pwer<br>franchise                |
| CorePOWER™                           | Global Power Resource <sup>SM</sup> | Programmable Active Droop™      | TinyBoost™                       |
| CROSSVOLT™                           | Green FPS™                          | QFET®                           | TinyBuck™                        |
| CTL™                                 | Green FPS™ e-Series™                | QS™                             | TinyLogic®                       |
| Current Transfer Logic™              | GTO™                                | Quiet Series™                   | TINYOPTO™                        |
| EcoSPARK <sup>®</sup>                | IntelliMAX™                         | RapidConfigure™                 | TinyPower™                       |
| EfficentMax™                         | ISOPLANAR™                          | Saving our world 1mW at a time™ | TinyPWM™                         |
| EZSWITCH™ *                          | MegaBuck™                           | SmartMax™                       | TinyWire™                        |
| EZ™                                  | MICROCOUPLER™                       | SMART START™                    | µSerDes™                         |
|                                      | MicroFET™                           | SPM®                            | $\mathcal{U}$                    |
| F                                    | MicroPak™                           | STEALTH™                        | Ser Des"                         |
| Fairchild <sup>®</sup>               | MillerDrive™                        | SuperFET™                       | UHC <sup>®</sup>                 |
| Fairchild Semiconductor <sup>®</sup> | MotionMax™                          | SuperSOT™-3                     | Ultra FRFET™                     |
| FACT Quiet Series™                   | Motion-SPM™                         | SuperSOT™-6                     | UniFET™                          |
| FACT <sup>®</sup>                    | OPTOLOGIC <sup>®</sup>              | SuperSOT™-8                     | VCX™                             |
| FAST <sup>®</sup>                    | OPTOPLANAR®                         | SuperMOS™                       | VisualMax™                       |
| FastvCore™                           | () <sup>®</sup>                     |                                 |                                  |
| FlashWriter <sup>®</sup> *           |                                     | GENERAL                         |                                  |

\* EZSWITCH™ and FlashWriter<sup>®</sup> are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status         | Definition                                                                                                                                                                                                       |
|--------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                               |
| Preliminary              | First Production       | This datasheet contains preliminary data; supplementary data will be pub-<br>lished at a later date. Fairchild Semiconductor reserves the right to make<br>changes at any time without notice to improve design. |
| No Identification Needed | Full Production        | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                                       |
| Obsolete                 | Not In Production      | This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                            |